US009171042B1

a2z United States Patent (10) Patent No.: US 9,171,042 B1
Welton et al. (45) Date of Patent: Oct. 27,2015
(54) PARALLEL PROCESSING DATABASE TREE 7,051,034 B1* 5/2006 Ghoshetal 707/718
STRUCTURE 7,072,934 B2 7/2006 Helgeson et al.
7,447,786 B2 11/2008 Loaiza et al.
: . . : 7,849,073 B2* 12/2010 Young-Laicccceouenee. 707/713
(71) Applicant: Eggc Corporation, Hopkinton, MA 7873.650 BL* 12011 Chapmanetal ... 2071764
Us) 7,877,379 B2 1/2011 Waingold et al.
. 8,051,052 B2* 11/2011 Jogand-Coulomb et al. . 707/694
(72) Inventors: Caleb Welton, Foster Clty, CA (US); 8,060,522 B2 11/2011 Birdwell et al.
Hitoshi Harada, Foster City, CA (US); 8,171,018 B2* 5/2012 Zaneetal. 707/718
Jeffrey Cohen, Sunnyvale, CA (US); Lei 8,195,705 B2* 6/2012 Calvignacetal. 707/797
Chang, Beijing (CN); Radhika Reddy, 8,209,697 B2* 6/2012 Kobayashietal. ... 718/104
Cupertino, CA (US); Tao Ma, Beining 8230417 27 82012 Guetal. -~ 70779
. . ,370, aetal. ...
(CN): Zhanwei Wang, Beijing (CN) 8788464 Bl 7/2014 Lolaetal.
. . . . 8,832,078 B2 9/2014 Annapragada et al.
(73) Assignee: E{%C Corporation, Hopkinton, MA 8886.631 B2 112014 Abadi ef al.
Us) 8,935,232 B2 1/2015 Abadi et al.
. 2003/0204427 Al 10/2003 Gune et al.
(*) Notice: Subject. to any dlsclalmer,. the term of this 2003/0229627 Al 122003 Carlson et al.
patent is extended or adjusted under 35 2003/0229639 Al 12/2003 Carlson et al.
U.S.C. 154(b) by 72 days. 2003/0229640 Al 12/2003 Carlson et al.
| 2004/0128290 Al 7/2004 Haas et al.
21) Appl. No.: 13/839,171
(1) Appl. No ’ (Continued)
(22) Filed: Mar. 15,2013
OTHER PUBLICATIONS
Related U.S. Application Data
“Parallel Processing & Parallel Database”, 1997, Oracle.
(60) Provisional application No. 61/769,043, filed on Feb. .
252013 (Continued)
(51) Imnt.ClL
GO6F 17/30 (2006.01) Primary Examiner — Kim Nguyen
(52) US.CL (74) Attorney, Agent, or Firm — Van Pelt, Yi & James LLP
CPC oo GOG6F 17/30463 (2013.01)
(58) Field of Classification Search
USPC oo 707/718,797 (57) ABSTRACT

See application file for complete search history. . .
Database system comprising nodes configured in a tree struc-

(56) References Cited ture is disclosed. The system includes a shared metadata store
on the root node. Child nodes may request metadata from
U.S. PATENT DOCUMENTS their ancestors. Parents will forward the request upward until

5857.180 A /1999 Hallmark ef al. the metadata is found or the root node is reached.

6,219,692 B1* 4/2001 Stilesoovvvvveeiieninnns 709/201
6,678,695 Bl 1/2004 Bonneau et al.
6,928,451 B2* 8/2005 Mogietal.cccovrrnnn. 707/718 19 Claims, 6 Drawing Sheets

Querying a parent node for the
08~ ackition| metadata, whereln the parent
nodk cach

6107

Checking the cache for additional
metatata

I

Querying successive ancestor nodes
612”1 untll the adionsl metadata I found

US 9,171,042 B1
Page 2

(56)

2004/0177319
2004/0215626
2005/0193035
2006/0149799
2008/0016080
2009/0327242
2010/0094716
2010/0198855
2011/0060732
2011/0302151
2011/0302226
2011/0302583
2012/0117120
2012/0166417

References Cited

U.S. PATENT DOCUMENTS

Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

9/2004
10/2004
9/2005
7/2006
1/2008
12/2009
4/2010
8/2010
3/2011
12/2011
12/2011
12/2011
5/2012
6/2012

Horn

Colossi et al.
Byrne

Wong et al.
Korn et al.
Brown et al.
Ganesan et al.
Ranganathan et al.
Bonneau et al.
Abadi et al.
Abadi et al.
Abadi et al.
Jacobson et al.

Chandramouli et al.

2012/0191699 Al 7/2012 George et al.
2012/0203765 Al 82012 Ackerman et al.
2012/0310916 Al 12/2012 Abadi et al.
2013/0086039 Al 4/2013 Salch etal.
2013/0179474 Al 7/2013 Charlet et al.
2013/0332478 Al 12/2013 Bornea et al.
2014/0108861 Al 4/2014 Abadi et al.
2014/0114952 Al 4/2014 Robinson et al.
2014/0156636 Al 6/2014 Bellamkonda et al.

OTHER PUBLICATIONS

“Greenplum Database: Critical Mass Innovation”, 2010.

“Greenplum Database 4.1 Administrator Guide”, 2011 (1 of 3).
“Greenplum Database 4.1 Administrator Guide”, 2011 (2 of 3).
“Greenplum Database 4.1 Administrator Guide”, 2011 (3 of 3).

* cited by examiner

U.S. Patent

Oct. 27,2015

Sheet 1 of 6

—
[
N

-
i~
™

US 9,171,042 B1

=
—
NS

Figure 1

U.S. Patent Oct. 27, 2015 Sheet 2 of 6 US 9,171,042 B1

Master Node
202
Storage
210
A 4
A
Query Dispatcher v
206
A Database Catalog Server
208
A
\ 4
Data Query Executer
214 212

Worker Node
204

Figure 2

U.S. Patent Oct. 27, 2015 Sheet 3 of 6

Receiving a query at a master node, the
master node comprising a database
catalog including metadata defining

database objects

\ 4

3027 N1

Transmitting a query plan and query
metadata to a worker node, wherein the
guery plan is based on the query, and
wherein the query metadata includes
metadata for executing the query plan

Storing the query metadata in a cache
on the worker node

A 4

Executing the query plan on a worker
node, wherein executing the query plan
comprises retrieving the query metadata
from the cache

308 7 \—1

Transmitting a request for additional
metadata from the worker node to the
master node

Transmitting the additional metadata

310 “N_~ fromthe master node to the worker
node
v
312 “_ Clearing the cache on the worker node.

Figure 3

US 9,171,042 B1

U.S. Patent Oct. 27, 2015 Sheet 4 of 6

Receiving a query at a master node, the
master node comprising a database
catalog including metadata defining

database objects

Generating a plurality of query plans
based on the query

Transmitting the plurality of query plans
to a plurality of worker nodes

Executing the plurality of query plans in
parallel on the worker nodes

Figure 4

US 9,171,042 B1

U.S. Patent

Oct. 27,2015 Sheet 5 of 6

US 9,171,042 B1

0]
=
(]

Figure 5

U.S. Patent

Oct. 27,

2015 Sheet 6 of 6

Receiving a query at a master node, the
master node comprising a database
catalog including metadata defining

database objects, and wherein the
master node is a root node in a tree
structure

Deriving a plurality of query plans from
the query

\ 4

Transmitting the query plans and query
metadata to a plurality of worker nodes,
wherein the query metadata includes
metadata for executing the query plans

606~ N1

Determining additional metadata is
needed for executing one of the plurality
of query plans

608 N

Querying a parent node for the
additional metadata, wherein the parent
node comprises a metadata cache

Checking the cache for additional

6107 1 metadata
A 4
Querying successive ancestor nodes
6127 N\ until the additional metadata is found

Figure 6

US 9,171,042 B1

US 9,171,042 B1

1
PARALLEL PROCESSING DATABASE TREE
STRUCTURE

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. Provisional Patent
Application No. 61/769,043 for INTEGRATION OF MAS-
SIVELY PARALLEL PROCESSING WITH A DATA
INTENSIVE FRAMEWORK file on Feb. 25, 2013, which is
incorporated herein by reference for all purposes.

This application is related to co-pending U.S. patent appli-
cation Ser. No. 13/838,955 for PROCESSING A DATABASE
QUERY USING A SHARED METADATA STORE, filed
Mar. 15, 2013, U.S. patent application Ser. No. 13/838,749
for PARALLEL PROCESSING DATABASE SYSTEM
WITH A SHARED METADATA STORE, filed Mar. 15,
2013, and U.S. patent application Ser. No. 13/839,390 for
PARALLEL PROCESSING DATABASE SYSTEM, filed
Mar. 15, 2013, which is incorporated herein by reference for

all purposes.
FIELD OF THE INVENTION

This invention relates generally to parallel processing data-
bases, and more particularly to systems and methods for
organizing a parallel processing database in a tree structure.

BACKGROUND OF THE INVENTION

Database systems are used to house digital information for
avariety of applications and users. These systems may house
thousands of terabytes or petabytes of information, all of
which may need to be quickly searched and analyzed at a
user’s request. Occasionally, these search and analysis
requests may be computationally intensive for a single
machine, and the query tasks may be distributed among mul-
tiple nodes in a cluster

Massively parallel processing (“MPP”) databases may be
used to execute complex database queries in parallel by dis-
tributing the queries to nodes in a cluster. Each node may
receive a portion of the query and execute it using a local
metadata store. Occasionally, data may be replicated between
the nodes in a cluster, thereby reducing consistency and
increasing maintenance costs.

There is a need, therefore, for an improved method, article
of manufacture, and apparatus for performing queries on a
distributed database system.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be readily understood by the
following detailed description in conjunction with the accom-
panying drawings, wherein like reference numerals designate
like structural elements, and in which:

FIG. 1 illustrates a parallel processing database architec-
ture in accordance with some embodiments of the present
disclosure.

FIG. 2 illustrates a parallel processing database have a
shared metadata catalog in accordance with some embodi-
ments of the present invention.

FIG. 3 is a flowchart of a method for executing a query
using a shared metadata catalog in accordance with some
embodiments of the present invention.

FIG. 4 illustrates a flowchart of a method for executing a
query in parallel on a parallel processing database using a

25

30

40

45

50

55

65

2

shared metadata catalog in accordance with some embodi-
ments of the present invention.

FIG. 5 illustrates a system architecture for locating execu-
tion metadata using a tree structure in accordance with some
embodiments of the present invention.

FIG. 6 illustrates a flowchart of a method for locating
execution metadata using a tree structure in accordance with
some embodiments of the present invention.

DETAILED DESCRIPTION

A detailed description of one or more embodiments of the
invention is provided below along with accompanying figures
that illustrate the principles of the invention. While the inven-
tion is described in conjunction with such embodiment(s), it
should be understood that the invention is not limited to any
one embodiment. On the contrary, the scope of the invention
is limited only by the claims and the invention encompasses
numerous alternatives, modifications, and equivalents. For
the purpose of example, numerous specific details are set
forth in the following description in order to provide a thor-
oughunderstanding of the present invention. These details are
provided for the purpose of example, and the present inven-
tion may be practiced according to the claims without some or
all of these specific details. For the purpose of clarity, tech-
nical material that is known in the technical fields related to
the invention has not been described in detail so that the
present invention is not unnecessarily obscured.

It should be appreciated that the present invention can be
implemented in numerous ways, including as a process, an
apparatus, a system, a device, a method, or a computer read-
able medium such as a computer readable storage medium or
a computer network wherein computer program instructions
are sent over optical or electronic communication links.
Applications may take the form of software executing on a
general purpose computer or be hardwired or hard coded in
hardware. In this specification, these implementations, or any
other form that the invention may take, may be referred to as
techniques. In general, the order of the steps of disclosed
processes may be altered within the scope of the invention.

An embodiment of the invention will be described with
reference to a data storage system in the form of a storage
system configured to store files, but it should be understood
that the principles of the invention are not limited to this
configuration. Rather, they are applicable to any system
capable of storing and handling various types of objects, in
analog, digital, or other form. Although terms such as docu-
ment, file, object, etc. may be used by way of example, the
principles of the invention are not limited to any particular
form of representing and storing data or other information;
rather, they are equally applicable to any object capable of
representing information.

With reference to FIG. 1, a parallel processing database
architecture consistent with an embodiment of the present
disclosure is discussed. Client 100 may submit a query, such
as an SQL database query, to master node 102. Master node
102 may comprise processor 104 and non-transitory com-
puter readable medium 106. Master node 102 may derive one
or more query plans based on the query received from client
100, and thereafter transmit the query plans to worker nodes
108. A query plan may be, for example, a set of instructions
for performing a data operation on a database. In an embodi-
ment, worker nodes 108 may include processors 112 and
non-transitory computer readable storage mediums 114.
Worker nodes 108 may process the query plans in parallel,

US 9,171,042 B1

3

and then return their results to master node 102. Master node
102 may compile all the received results, and return a final
query result to client 100.

In some embodiments, worker nodes may need query
metadata to execute the received query plans. Query metadata
may include, for example, database table definitions, user or
system defined database functions, database views, and/or
database indexes. In some embodiments, this metadata may
be maintained by catalogs on every worker node in the sys-
tem. For example, these catalogs may be stored in non-tran-
sitory computer readable mediums 114.

While maintaining the catalogs on every node may be
manageable on smaller systems, such as system with one or
two machines, such maintenance may not be scalable as the
database cluster grows. For example, if a database cluster
comprises ten thousand nodes, and if each node contains a
local metadata catalog, maintaining those catalogs may be
unwieldy or impossible. Even a minor change may need to be
replicated among the ten thousand different nodes, and each
replication presents a risk of error. As the cluster size grows,
this risk increases. Further, storing the catalog on every node
in the system may not be an efficient use of storage resources.
Even if the catalog only consumes a small amount of storage
space, this storage space may be significant when aggregated
over thousands of nodes.

In orderto address these challenges, a database system may
use the master node/worker node architecture shown in FIG.
2. Client 200 may submit a query, such as an SQL query, to
master node 202. Master node 202 may develop a query plan
from the query, and forward that plan to worker node 204 for
execution. In an embodiment, client 200 may be similar to
client 100, master node 202 may be similar to master node
102, and worker node 204 may be substantially similar to
worker nodes 108. While only one worker node is shown in
FIG. 2, any number of nodes may be used in the database
cluster.

The query from client 200 may be received by query dis-
patcher 206. In an embodiment, query dispatcher 206 devel-
ops query plans from the received query. Query dispatcher
may also determine what metadata may be necessary for the
execution of the query plans, and retrieve that metadata from
database catalog server 208 (the “metadata catalog” or “data-
base catalog”). This metadata may be identified while inter-
preting the received query and developing the query plans. In
an embodiment, the database catalog may be stored on a
non-transitory computer readable medium, such as storage
210. Query dispatcher may then transmit both the retrieved
metadata and the query plan to worker node 204.

Transmitting the metadata data along with the query plan
from master node 202 allows the database catalog to be main-
tained at a single location; namely, master node 202. Since
worker node 204 receives the query plan along with the meta-
data, it does not need to maintain a local metadata catalog.
When a change is made to the catalog, it may be made a single
location and may not need to be propagated to other nodes in
the cluster. This may decrease maintenance costs, improve
reliability, increase the amount of available space in the clus-
ter, and improve scalability.

In an embodiment, the query plan is annotated to include
the metadata, and the plan and metadata are transmitted at the
same time. Additionally or alternatively, the query plan and
metadata may be transmitted separately. For example, the
metadata may be transmitted to worker node 204 before or
after the query plan.

Once worker node 204 has received the plan and the meta-
data, query executer 212 may execute the query plan. In some
embodiments, this execution may involve a performing a data

10

20

25

30

35

40

45

50

55

60

65

4

operation on data 214. Data 214 may be stored on a computer
readable medium, such as medium 114. In some embodi-
ments, the metadata received from master node 202 may not
be sufficient to fully execute the query plan. Should query
executor 212 need additional metadata, it may send a request
back to database catalog server 208. Catalog server 208 may
retrieve the additional metadata, transmit it back to query
executor 212, and the query executor may complete the query.

In an embodiment, a separate catalog server session is
established for each query request. For example, when a
request is received a catalog server session may be initiated,
where that server session includes a snapshot of the metadata
catalog. In an embodiment, this snapshot is taken when the
query is executed. The metadata initially transmitted to the
worker nodes may be retrieved from that session, and any
incoming request for additional metadata may retrieve the
additional metadata from the same session. This may ensure
that the metadata remains consistent throughout query execu-
tion. For example, if a session is not used, the query dis-
patcher may distribute query plans with the metadata, the
metadata may then change on the database catalog server or
computer readable medium, and a worker node may make a
request for additional metadata. In response, the catalog
server may distribute the modified metadata which is not
consistent with the original query. Initiating separate catalog
server processes may alleviate this problem.

Turning now to FIG. 3, a method for executing a query on
a system substantially similar to FIG. 2 is discussed. At 300,
a query is received at a master node. This query could be
received, for example, from client 100. The master node may
comprise a database catalog which includes metadata defin-
ing database objects. This database catalog may be managed
by database catalog server 208, and stored on storage 210. In
an embodiment, the metadata may include database table
definitions, user or system defined database functions, data-
base views, and/or database indexes.

At 302, a query plan and query metadata are transmitted to
a worker node for execution. The query plan may be based on
the received query, and may comprise an execution strategy
for completing all or a portion of the query. The query meta-
data may include metadata needed for executing the query
plan. For example, if the query plan involves a user defined
function, that function may be included in the transmitted
metadata.

At 304, the metadata may be stored a local cache on the
worker node. This cache could exist, for example, in a
memory such as random access memory (“RAM?”). Storing
the metadata in cache allows for rapid retrieval during the
execution process and reduces the number of call backs from
the worker node to the metadata catalog on the master node.

At block 306, the query plan is executed on the worker
node. The query execution may require use of metadata, and
that metadata may be retrieved from the worker cache.

At 308, the worker may determine that it needs additional
metadata to execute the query, and may transmit a request for
that metadata back to the master node. In some embodiments,
this transmission may be received by a catalog server, such as
metadata catalog server 208. Additionally or alternatively, the
transmission may be received and processed by a catalog
server session as discussed above.

At 310, the additional requested metadata may be trans-
mitted from the master to the worker, and the query execution
may continue. At block 312, once the execution is complete,
the cache may be cleared and the query result may be returned
to the master node.

FIG. 4 depicts a method similar to FIG. 3 for executing
query plans in parallel on a database cluster. At 400 a query is

US 9,171,042 B1

5

received at a master node, where the master node comprises a
metadata catalog. The catalog may include metadata defining
database objects, as discussed above.

At block 402, the master node may generate a plurality of
query plans. These plans could be generated, for example,
using query dispatcher 206. At 404, these plans may be dis-
tributed to a plurality of worker nodes in the database cluster,
and at 406 the plans may be executed.

Turning now to FIG. 5, a system for locating query meta-
data is shown. As previously discussed, a worker node may
transmit a request to the master node when the worker does
not have all the necessary metadata for executing a query
plan. When there are only a few nodes in the cluster, this may
be an efficient way of obtaining the missing metadata. As the
cluster size increases, however, this approach may become
more costly. For example, if there are ten thousand nodes in a
cluster, additional metadata may be requested from up to ten
thousand locations. The system may not have sufficient band-
width, and the master node may not have enough processing
resources, to handle this number of consecutive connections.

The architecture shown in FIG. 5 may help overcome these
issues. Worker nodes 504, 505, 506, 508, and 510 may be
configured in a tree structure, and master node 502 may be a
root node. Master node 502 may receive a query from client
500, may develop query plans for that query, and may distrib-
ute the query plans and needed metadata to the worker nodes.
This process may be substantially similar to the processes
discussed above. In an embodiment, master node 502 may
distribute the query plans and metadata directly to each
worker node. In other words, master node 502 has a connec-
tion to each worker node and may transmit the query plans
and metadata without using the shown tree structure.

Once a worker node has received a query plan and some
associated metadata, that node may begin processing the
plan. In an embodiment, a worker node may need additional
metadata that was not included in the original transmission
from the master node. As discussed above, worker node may
send a request to a master node for the additional metadata.
This may, however, result in an unmanageable number of
connections to the master node if multiple worker nodes make
similar requests.

In some embodiments, rather than transmitting a request
directly to the master node, the worker node may request
additional metadata from a parent in the tree structure. Since
the master node distributes metadata to all the nodes in the
cluster, a parent of the present worker node may have the
additional metadata stored in cache. If the immediate parent
does not have the additional metadata, the successive parents
may be queried until the metadata is found or the master node
is reached. Once the additional metadata is found, whether on
an ancestor or the master node, it may be transmitted back to
the requesting worker node. This may allow a very large
number of nodes in a cluster to request additional metadata,
without opening an unmanageable number of connections to
the master node.

For example, master node 502 may transmit a query plan
and some metadata to worker node 505. Worker node 505
may determine that additional metadata is necessary to
execute the query plan. Rather than requesting the additional
metadata directly from master node 502 (which contains the
metadata catalog), worker node 505 may request the metadata
from its parent worker node 508. Worker node 508 may check
its cache and return the additional metadata to node 505 if the
metadata is found. If the additional metadata is not found,
worker node 508 may forward the request to the next parent,
which is master node 502. Master node 502 may retrieve the

20

40

45

6

additional metadata from the metadata catalog and transmit it
to the original requesting worker node 505.

In some embodiments, requests for additional metadata
may be forwarded up the tree structure as just described. Each
node may know its parent, and if the metadata is not found in
the local cache the node may forward the request to that
parent. The tree structure may be particularly beneficial
because new nodes can be added or removed without updat-
ing information on every node in the cluster. In some embodi-
ments, however, each worker node may be responsible for
maintaining its own ancestry. For example, worker node 505
may know its parents are worker node 508 and master node
502. Ifarequest for additional metadata is sent to worker node
508 and the metadata is not found, worker node 505 may
submit the request to master node 502 directly rather than
having the request forwarded by worker node 508.

Additionally or alternatively, no tree structure may be used.
Each worker node may maintain a list or directory of other
worker nodes. If additional metadata is needed, the worker
node may iterate through this list and make calls to the other
worker nodes. The master node may only be called once the
listis exhausted without locating the additional metadata. The
requests may be sent to the nodes on the list one at a time, or
a request may be sent to all the nodes at the same time.

In some embodiments, requests for additional metadata
may be transmitted throughout the system as a multicast
request. In such an embodiment, a request may only be made
to the master node if no other node responds within a defined
time frame.

Turning now to FIG. 6, a method for locating additional
metadata using a tree structure is discussed. At block 600, a
query is received at a master node. The master node may
comprise a database catalog that includes metadata defining
database objects. The master node may be the root node in a
tree structure, and in an embodiment may be substantially
similar to master node 502.

At 602 a plurality of query plans may be derived from the
query, and at 604 these plans may be distributed to a plurality
of'worker nodes. In an embodiment, the worker nodes may be
similar to worker nodes 504, 505, 506, 508, and 510. Query
metadata may be distributed with the plans, where the query
metadata includes metadata necessary for executing the
plans.

At 606, one or more of the worker nodes may determine
they need additional metadata to execute the query plan, and
at 608 this worker node may query a parent for the additional
metadata. In an embodiment, this parent node may be another
worker node, and may comprise a metadata cache. This meta-
data cache may be substantially similar to the cache discussed
in reference to FIG. 3.

At 610, the cache on the parent node is checked for the
metadata. [fthe metadata is found, it may be transmitted to the
worker node making the request. If the metadata is not found,
successive ancestor nodes may be queried at 612 until the
additional metadata is found in a parent worker node’s cache,
or the master node is reached.

For the sake of clarity, the processes and methods herein
have been illustrated with a specific flow, but it should be
understood that other sequences may be possible and that
some may be performed in parallel, without departing from
the spirit of the invention. Additionally, steps may be subdi-
vided or combined. As disclosed herein, software written in
accordance with the present invention may be stored in some
form of computer-readable medium, such as memory or CD-
ROM, or transmitted over a network, and executed by a pro-
Ccessor.

US 9,171,042 B1

7

All references cited herein are intended to be incorporated
by reference. Although the present invention has been
described above in terms of specific embodiments, it is antici-
pated that alterations and modifications to this invention will
no doubt become apparent to those skilled in the art and may
be practiced within the scope and equivalents of the appended
claims. More than one computer may be used, such as by
using multiple computers in a parallel or load-sharing
arrangement or distributing tasks across multiple computers
such that, as a whole, they perform the functions of the com-
ponents identified herein; i.e. they take the place of a single
computer. Various functions described above may be per-
formed by a single process or groups of processes, on a single
computer or distributed over several computers. Processes
may invoke other processes to handle certain tasks. A single
storage device may be used, or several may be used to take the
place of a single storage device. The disclosed embodiments
are illustrative and not restrictive, and the invention is not to
be limited to the details given herein. There are many alter-
native ways of implementing the invention. It is therefore
intended that the disclosure and following claims be inter-
preted as covering all such alterations and modifications as
fall within the true spirit and scope of the invention.

What is claimed is:

1. A method for executing queries in a parallel processing
database system, comprising:

receiving a query at a master node, the master node com-

prising a database catalog including metadata defining
database objects;
deriving a plurality of query plans from the query;
transmitting the query plans and query metadata to a plu-
rality of worker nodes, wherein the query metadata
includes metadata for executing the query plans;

determining additional metadata is needed for executing
one of the plurality of query plans; and querying a parent
node for the additional metadata; and

querying successive ancestor nodes until the master node is

reached.

2. The method of claim 1, further comprising querying
successive ancestor nodes until the additional metadata is
found.

3. The method of claim 1, wherein the master node is a root
node in tree structure.

4. The method of claim 1, wherein the parent node com-
prises a metadata cache.

5. The method of claim 4, further comprising checking the
cache for the additional metadata.

6. The method of claim 1, wherein the query plans include
a set of instructions.

7. The method of claim 1, wherein the query metadata
includes one or more of a database table definition, a database
function, a database view, and a database index.

8. The method of claim 1, further comprising:

in the event that the query is received at the master node,

establishing a catalog server session corresponding to
the query, and retrieving the query metadata from a
metadata catalog stored on a database catalog server.

9. The method of claim 1, wherein each of the plurality of
worker nodes is operatively connected to the master node and

10

15

20

25

30

35

40

45

50

55

8

comprises a database configured to execute a database query
corresponding to the respective query plan and query meta-
data that is received from the master node.

10. A computer program product for executing queries in a
parallel processing database system, comprising a non-tran-
sitory computer readable medium having program instruc-
tions embodied therein for:

receiving a query at a master node, the master node com-

prising a database catalog including metadata defining
database objects;
deriving a plurality of query plans from the query;
transmitting the query plans and query metadata to a plu-
rality of worker nodes, wherein the query metadata
includes metadata for executing the query plans;

determining additional metadata is needed for executing
one of the plurality of query plans;

querying a parent node for the additional metadata; and

querying successive ancestor nodes until the master node is

reached.

11. The computer program product of claim 10, the non-
transitory computer readable medium having program
instructions embodied therein for querying successive ances-
tor nodes until the additional metadata is found.

12. The computer program product of claim 10, wherein
the master node is a root node in tree structure.

13. The computer program product of claim 10, wherein
the parent node comprises a metadata cache.

14. The computer program product of claim 13, the non-
transitory computer readable medium having program
instructions embodied therein for checking the cache for the
additional metadata.

15. A system for executing queries in a parallel processing
database, comprising a non-transitory computer readable
medium and a processor configured to:

receive a query at a master node, the master node compris-

ing a database catalog including metadata defining data-
base objects;

derive a plurality of query plans from the query;

transmit the query plans and query metadata to a plurality

of worker nodes, wherein the query metadata includes
metadata for executing the query plans;

determine additional metadata is needed for executing one

of the plurality of query plans; and

query a parent node for the additional metadata; and

query successive ancestor nodes until the master node is

reached.

16. The system of claim 15, wherein the processor is fur-
ther configured to query successive ancestor nodes until the
additional metadata is found.

17. The system of claim 15, wherein the master node is a
root node in tree structure.

18. The system of claim 15, wherein the parent node com-
prises a metadata cache.

19. The system of claim 18, wherein the processor is fur-
ther configured to check the cache for the additional meta-
data.

